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Abstract

A numerical technique that solves the parabolized form of the Navier-Stokes equa-

tions is presented. Such a method makes it possible to obtain very detailed descriptions

of the flowfield in a relatively modest CPU time. The present approach is based on

a space-marching technique, uses a finite volume discretization and an upwind flux-

difference splitting scheme for the evaluation of the inviscid fluxes. Second order ac-

curacy is achieved following the guidelines of the the ENO schemes. The methodology

is used to investigate three-dimensional supersonic viscous flows over symmetric cor-

ners. Primary and secondary streamwise vortical structures embedded in the boundary

layer and originated by the interaction with shock waves are detected and studied. For

purpose of validation, results are compared with experimental data extracted from

literature. The agreement is found to be satisfactory. In conclusion, the numerical

method proposed seems to be promising as it permits, at a reasonable computational

expense, investigation of complex three-dimensionai flowflelds in great detail.

*This research was supported in part by MPI40% and it was also supported in part by the National
Aeronautics and" Space Administration under NASA Contract No. NAS1-19480 while the second author
was in residence at the Institute for Computer Applications in Science and Engineering, (ICASE), NASA
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1 Introduction

In the study of three-dimensional supersonic flows it is common to be faced with complex

interactions concerning shock waves and viscous layers. Such occurrences often provoke

dramatic changes in the flowfield features, both qualitatively and quantitatively. Shock-

induced separations of the viscous layer make the flow vortex-dominated close to the wall,

and vortical structures are also likely to appear, for sufficiently high Reynolds numbers,

in zones where convective effects are preponderant, due the instability of the slip surfaces

resulting from shock/shock interactions. Important consequences of these interactions are

increases in heat fluxes, skin friction coefficients and pressures at the wall in correspondence

with the reattachment of the separated flow; in addition transition, shock wave shapes and

the efficiency of the air-intakes that might swallow such streams are affected.

Numerical tests are usually helpful in the investigations of such complicated fluid-dynamic

patterns, as they provide a tool to observe and possibly to understand the origins and

the effects of the numerous phenomena triggered by shock/shock and shock/viscous layer

interactions. It is clear, however, that in order to obtain good numerical results comparable

with experimental data, a fairly detailed description of the flowfield is necessary, especially

when multiple vortical structures are present.

The only completely correct way of solving numerically three-dimensional compressible

viscous flows is to integrate in time the full Navier-Stokes equations until a steady-state (if

one exists) is reached. This approach is certainly affordable today, but, if many grid points

are needed to solve in detail complex fluid-dynamic features, it could be excessively time

and memory consuming. In the case of supersonic steady-state flows, however, this practical

difficulty can be partially circumvented with the aid of the approximate form of the full

Navier-Stokes equations known as Parabolized Navier-Stokes equations.

As will be pointed out in the next sections, the advantage of the Parabolized Navier-

Stokes (PNS) equations is that they can be solved using a space-marching technique, a

characteristic which allows one to spend relatively short computational effort and also results

in noticeable memory savings. Therefore, it is possible to reinvest time and memory in

more refined grids, thus permitting a better resolution of the flowfield. As a drawback,

the parabolizing assumption requires the freestream Mach number to be supersonic and the

streamwise velocity to be always positive (streamwise flow separations are thus excluded,

while crossflow separations are permitted); moreover, the streamwise pressure gradient must

be altered in the subsonic part of the flowfield [1].

In the approach presented here, the governing equations are integrated in an explicit fash-

ion and the physical domain is discretized according to a finite volume technique. The con-

vective part of the equations (inviscid fluxes) is treated following a flux-difference-splitting

method with an approximate solution of a Riemann problem at each cell interface [2][3]

while the diffusive terms (viscous fluxes) are calculated using a centered scheme. Second

order accuracy is achieved by means of an Essentially Non Oscillatory scheme [4] with linear

reconstruction of the solution at each step of integration. Presently, only inert gases in lam-

inar regime are considered, but a future extension to include thermochemical or turbulence

effects is certainly possible.

To validate the method, numerical results are compared with experimental data ex-

tracted from the literature. Supersonic corner flows configurations have been chosen as a



benchmarkasthey give the chanceto have,on the samegeometry,shock/shockinteractions
and shock/viscouslayer interactionswith multiple separations.The comparisonappearsto
be satisfactory, as the sameflowfield featuresare recognized,and measuredand computed
valuesshow a good agreement.

2 Governing equations

2.1 Starting point: the three-dimensional Navier-Stokes equations

Compressible viscous flows are governed by the Navier-Stokes equations, that written in

integral conservative form read like:

0

-ff_ /wWd_;+ fsFi._clS+ fsFv._dS=O (1)

where _ represents an arbitrary volume inclosed in a surface S with unit normal _ positive

if directed outward.

,J

Figure 1: Control volume

System (1) can be reduced to the non-dimensional form with the help of the following

reference values: L for length, Too for temperature, _ for veiocityl RToo for energy per

unit mass and p(Too) for viscosity. Therefore, from now on, the flowfield variables should be

considered as non-dimensional. In particular, W is the vector of conservative variables

W = {p,p_, E} T

tensor FI contains the inviscid fluxes

F! = .{p ¢, p[ ÷ p ¢ ® _, (E -+-p ) qnyr

and tensor Fv contains the viscous fluxes

v/'_'M°° [0, Y,-kVT - _. q-.}T
Fv = -Redo

Quantities p, p and _ = {u, v, w} T are respectively the local density, pressure and velocity;

E represents the total energy per unit volume:
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e is the internal energyper unit mass,Moo and Reoo are the freestream Mach number and

Reynolds number, 7 is the ratio of the specific heats and, finally, 7 is the unit matrix.

Viscous stresses are contained in tensor _, with

_" = _ t\&, + &,] -_(vq_,j (a)

where 50 is the KrSneker's symbol. The viscosity is calculated via Sutherland's law:

\T+TT,f (4)

where
110.4K

Try1- Too

and the thermal conductivity k is obtained according to the relation:

(5)

k= _ _ (6)
Pr7 - 1

where Pr is the Prandtl number. Finally, the perfect gas relationship completes the set of

equations

P=T (7)
P

2.2 Three-dimensional Parabolized Navier-Stokes equations

The three-dimensional Parabolized Navier-Stokes equations are derived from the steady-state

full Navier-Stokes equations with the aim of obtaining a system of equations representing a

well posed problem with respect to an integration performed using a space-marching tech-

nique. For this purpose, any derivative in the streamwige direction contained in the stress

tensor is neglected, all viscous and heat fluxes in the streamwise direction are dropped and

the pressure gradient in the subsonic layer is properly altered. With such modifications,

which are valid only for sufficiently high Reynolds numbers, system (1) is reduced to a set

of hyperbolic-parabolic equations [1][5].

Thus, assuming the streamwise direction to be coincident with the x-axis, the components

of the stress tensor necessary to evaluate the viscous fluxes are reduced to the following form:

2

r5 =-_ (vy + wz) (8)

2

7u*y= g# (2v u - w,) (9 /

2

%*z= _/t (2w, -- v_) (10)

r_y = %*_ =/_u_ (11)

r; * (12)z = rz_ = #Uz

_;_ = r:_ = _(v_ + w_) (13)
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Moreover,the x-componentof the temperature gradient is neglected:

VT*= Tj + T,L" (14)

The streamwise pressure gradient is split according to the technique suggested by Vi-

gneron, Rakich and Tannehill in reference [1]:

p_ =wp_ + (1 -w) px (15)

If only the first term of the RHS of equation (15) is retained and the second term is considered

as a source term, the set of equations containing only the convective terms is hyperbolic

provided that

u>0
(16)

7M_ for M_ < 1
w< l+(7-1)M_ =v-: : _ "

where M, is the local Mach number in the streamwise direction. The first condition contained

in equations (16) prevents the PNS approximation from being used when the flow separates

in the streamwise direction. A short analysis of the second condition reveals that _ is equal

to 1 when-_ _= 1 and is zero when M, = O; this means that the effect of the Streamwise

pressure gradient is completely neglected at the wall, but is progressively included as the

flow approaches supersonic conditions. For M_ greater than I the effect of p, will be entirely

taken into account and the value of w will be unity. Of course, since a space-marching

integration is desired, the freestream Mach number will necessarily have to be supersonic.

Combining the cited assumptions, system (1) is finally reduced to the following form:

fs F_. gdS + fs F_¢. n*dS : fs P" gdS + P' (17)

where

v/-TM°_ {O,-r',-kVT* - _. q-iT
F_¢ - Reoo
P = {[,-(1-w)pIZZ, O} T

and 7 7 and I*-= are scalar matrices with:

(18)

m

diag I* = (w, 1, 1)

diag I** = (t, O, O)

Since the viscous and heat fluxes in the steamwise direction are dropped, vector n_* contains

only the components in the y-direction and in the z-direction of the normal unit vector, that

is r[" = (O,n_,nz).
A source term P' must be added to make the integral formulation coherent with equation

(15), as noticefl in references [6] and [7]. In fact, the corresponding integral form of _op, is:

w f pn.dS : /wpn.dS - p j_n.dS :19)

4



®
®

t' ,o

Z

®

Figure 2: Computational control volume

Therefore, we have:

p, = {_,_,{_}T (20)

where f_ is a scalar matrix with

diag-_= (p f wn=dS, O,O) (21)

Real gas effects, that can arise for Mach numbers above 6, are neglected here. Moreover,

the flowfield regime is assumed to be laminar.

3 Numerical solution of the PNS equations

3.1 Discretization and integration

Being a set of hyperbolic-parabolic equations, PNS equations can be integrated in the stream-

wise direction according to a space-marching technique. In the present approach, such a

direction is assumed to be coincident with the x-axis, so that the flowfield is solved step by

step in planes normal to the x-direction. The physical domain is discretized according to

a finite volume approximation. Computational control volumes, as shown in figure 2, are

hexahedrons having two faces (labeled 2 and 4) normal to the x-direction. Keeping in mind

the previous discussion, system (17) can be discretized in the following way:

6 6 6

F* F* - =_-_( I),.fi, AS,+_-_'( vI,.r[',AS, _(P'), 0
i=1 i=1 i=1

(22)

where i is the surface label.

In equation (22), (Fi) 4 is the solution obtained at the previous integration step and

[(F;)2 - (P')2] is the unknown. The remaining inviscid and viscous fluxes across the lateral

surfaces have to be estimated and this will be the subject of the next two subsections.
L -- J

The source term P has been omitted in equation (22), this implies that only a part of the

streamwise pressure gradient is considered in the subsonic layer. The reason for neglecting

P is that it should be evaluated using a backward difference (i.e. considering the previous



volume) and this, asexplainedin reference[i],would arise in a stability condition imposing

a lower bound for Ax.

The integration of equation (22) is performed in an explicit manner, so that the values of

the primitives variables that are used to evaluate the lateral fluxes are those that have been

already calculated at the previous step, that is on surface 4. The x-momentum component

of P', which is the only one different from zero (see equations (20) and (21)), is discretized

KS:

P2 = P4 (_4_,x4AS4 Jr-wlnxlAS1 -t-w3nz_A,S3 nt- wsnxsA,_5 nt- w6n, x_AS6 nt- w2_,x2A,-_2) -

= (P')4 + (P')I + (P')3 + (P')s + (P')6 + (P')2

The unknown fluxes [(F_) 2 -(P')2] are finally evaluated from equation (22):

[(F_)2 - (P')2]" _2A& = - [(F_) 4 • 774A& - (P')4 +

(Fi) 1 • H_AS1 + (F_r),- n'*, AS1 - (P'), +

• * • 77*3A&(F,) 3 • n3AS3 + (F v)3 - (P')3 +
• " • 77*sA&(FI)5 •_sASs + (Fv) s - (P')5 +

(F_) 6 - g6A$6 + (F_r) 6 • n_%A$_ - (P')6]

(23)

To terminate the step, it is necessary to extract the primitive variables from the solution

fluxes [(F_) 2 - (P')2], which contain w. To accomplish this, a cubic function w = w (F_ - P')

has been obtained starting from the cubic function w = w (F_) suggested by J. Korte in [6].

Denoting the jth component of [(F_) 2 -(P')2] for brevity by (Fj),, the form of the function
is:

)]7 - 1 \2/-- i (F2)_ w_+

2A¢-1,(1 + A - w2- i-)3=0 (24)(.y_ 1) 2

with

72F 2(
A=

-- F. 22 (Fs)_ (F1)s (a)_ (F4)_

72p4
B=

(3' - 1) 2 [2 (Fs)_ (F1)_ - (r3)_ - (F4)]]

and where p4 is the pressure on surface 4. The quantity ¢ is a safety factor (-._ 0.8) which is

applied to w, that is evaluated at first according to equation (16), butjs then corrected as:

........... min(i,  ) ........

Equation (24) is solved using a Newton-Raphson iteration. Once w2 is known, it is possible

to evaluate F_'2 and finally the primitive variables on the face labeled with 2.



3.2 Evaluation of the lateral convective fluxes

Lateral inviscid fluxes are evaluated defining and solving an appropriate Riemann problem

across each lateral surface (1,3,5 or 6).

The definition of the Riemann problem consists, at first, in considering the two finite

volumes connected by the lateral surface and in fixing a direction 77joining the volumes and

belonging to the y-z plane that contains surfaces labeled as 4. In the present approach r/

is normal to the trace of the considered surface in the y-z plane (see figure 3). Then, the

variation of the flowfield variables along r/ is to be considered. Due to the discretization,

two piecewise constant (first order accuracy) or piecewise linear (second order accuracy)

distributions of the flowfield variables are present between cells A and B, separated by a

discontinuity in correspondence of the lateral surface (see figures 3 and 4). The collapse of

such a discontinuity generates a pattern of waves along which signals propagate. The waves

split the domain in the vicinity of the discontinuity in a set of uniform regions where the

values of the flowfield variables are to be found, generating in this way a Riemann problem.

To obtain waves directions and corresponding signals, the equations governing the invis-

cid part of the flowfield are written in quasi-linear form in a new local frame of reference

constituted by direction r/, by the x-direction and by a C-direction normal to plane r/- x (see

figure 3). Here an approximate solution of the Riemann problem is sought for [2], and conse-

quently the Euler equations are written under the assumption of isentropic flow. Moreover,

the Riemann problem is solved for simplicity in two dimensions rather than in three, so that

only variations of the flowfield variables along the x-r/plane are considered. Therefore, all

the derivatives in the _-direction are neglected, and finally the following set of equations is

obtained:

_P, + 6P, + 79_ = 0
(/2

_. + _ + m(p__ _p.)= 0
.),u2

_ + _ = 0 (25)
(/2

h_+ _h, - -j- (_P_ + _P,) = 0

o

Figure 3: Local frame of reference
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N,M , N,M+ 1

|

A B )1
surface

Figure 4: Piecewise constant distribution along r/between cells A and B

where P, b, tS, h,and h ° have been chosen as dependent variables, with:

_ = 7(1 -w)-[-w 1-_--ff

P =tnp

b = r/yo" + r/zr

t? = Gv + Gw

u 2 + v 2 + w 2
h ° = h+

2
V W

U U

and where q = (%, r/z) and (= (_u, _z) are unit vectors defining directions r/and _.

Owing to their hyperbolic nature, the quasilinear equations can be replaced by the com-

patibility equations that describe the convection of signals. In the present case, the collapse

of the discontinuity between A and B generates a pattern of five waves (characteristic lines)

along which the signals (Riemann invariants) defined by the compatibility equations propa-

gate. The Riemann invariants and characteristic slopes corresponding to system (25) are:

7u2 _ l _ db = 0

dR1,5 = dP + Ta23_ u25.( a u2b(1-W) db'
dR2 = dh - a2w (1 + b) dP + = 0 (26)

7 1 + wb 2 1 + a:b 2
dR3 = dw = 0

dR4 = dh ° = 0

and

with

c_u2b _= a23
"_1,5 _-- O3(_ 2 _a2)+ 3,U2 (1 --W)

A2,3, 4 = _"

_ i u2 [w (1+ &2) -7(w- 1)] -

1 [I-4-w "4-9'(1--w)]
_=_

a: + _ (w-1)2 62

(27)



2,3,4 surface

! i "

A N,M+I/2 B

f

Figure 5: The Riemann problem

Equation (27) shows that there are only three distinct waves, which in the following will

be called I (wave #1), II (waves #2,3,4) and III (wave #5). Such waves generate two new

uniform regions c and d, which add up to the initial ones a and b (see figure 5). As signals

traveling on each wave are not altered when crossing a characteristic of a different family, it

is possible to write:

dRlb = dR1d

dR2o = dR2c dR2b = dR2d

dR3a = dR3c dR3b = dR3_ (28)

dR4a = dR4_ dR4b = dR4_

dRs_ = dRs,

Moreover, across the contact surface II the pressure and the streamline slope _ remain

constant, and therefore:

5c = _d Pc = Pd (29)

To calculate the values of the flowfield variables in regions c and d, equations (28) must be

integrated. Following the technique presented in reference [2], the integration is performed

in an approximate way; therefore, the complete set of equations that it is necessary to solve

is:

Rso=Rso -_ Pc+ a2_-u2_(a-1) _

R_o R_o ~ ho- i-+_/o P_+\ _+_2 /oPt

(_w (u2_(1- _)_n2b R2 d "" hd a ]-7_--filb(l+_)_Pd+ \ i_w_ 2 ]bf'd

( _'_ ) (3o)
b

Wa --- Wc

W b _ W d

hO=h o

h_ = h_
Pc= Pd
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Figure 6: The son_ line

Once regions c and d are known, it is possible to Verify if the acoustic waves I and III are

expansion or compression fans (that is shock waves_ It is also possible to verify in which

region the trace of the lateral surface in the r/-x plan_ embedded _ and therefore to calculate
the correct fluxes. In the situation depicted in figureS, for example, the lateral surface is in

region d, so that the flux across it can be easily found_using the values computed there. This

also corresponds to splitting the flux difference bet@n A and B in three contributions:

(F_). - (F_) b = [(F_). - (F_)j + [(F_)_-=-_ (F_)a] + [(F_) d - (F_)b]

and to considering the flux across the lateral surfaceas Constituted of the flux in a plus the

contribution of the left traveling waves:

(FI)N,M+a/2 (FI)a + [(Fi)d (FI)c] + [( I)c (FI)a] - (FI)d

or of the flux in b plus the contribution of the right traveling waves:

(F*) (F*) [(F*) Z_(F*)] (F*) : :::_=-:_ ......I NM+I/2 _ I b Jv I d I b = I d - = _:: :: :::

In case the lateral surface is embedded in an expansi0n or compression fan: the values of

the fl0wfield variables in correspondence with the 's_nic point _ labeled with a star in figure

6 must be known. According to what has been previhusly stated, the flow here is obtainable

from conditions: --"

'" )a2fl + tt2_ (o_ -- 1) a*
b

<
Wb _ W*

]1_--.]'1 °°

System (31) can be easily solved through iterations. When the values of the dependent

variables in correspondence with the sonic line are known, it is possible to write, in case of

an expansion ]_an: =

(F_)N,M+I/_. = (Fi) b + [(Fi)* (Fi)b] = (Fi)"

10



or

* _-- F* F*(FI)N,M+I/2 ( I)_ + [(F_)"- ( I)_]= (F_)*

and in case of a compression fan:

(F_)N,M+I/2 = (F_) b + [(F_) d - (F_)*]

or

(F_)N,M+I/2 = (F_),, + [(F_) b - (F_)*J + [(F_) a - (F_)_] = (F_) b + (F_) a - (F_)*

The approximation that the acoustic waves are isentropic also in case they are shocks

could lead to some inaccuracies when strong shock waves are concerned. For this reason,

when the presence of a strong compression is recognized through an acoustic wave, an exact

Riemann problem solver is switched on. In the case of figure 6, this consists in imposing

the Rankine-Hugoniot conditions across wave III, the Prandtl-Meyer conditions across wave

I and the constancy of p and b across wave II.

3.3 Evaluation of the lateral diffusive fluxes

To evaluate the diffusive fluxes contained in vector F_ it is necessary to compute u, v and

w and the gradients of u, v, w and T in the y-z plane in correspondence with the trace of

the considered lateral surface.

Gradients are calculated using the Gauss' theorem:

(a2)

and applying it to the y-z plane containing surfaces labeled with 4. The discretized form of

equation (32) reduced to two dimensions is:

1

1

N+I

N

N-1

Yt__
0 z

@ •

4_ _L 3
! !

1 2
• @

M M+l

i surface center

× averaged values

0 streamwise derivative

__ computational cell surface

_ _ viscous cell

Figure 7: The viscous cell
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whereAgi indicates each side of the viscous cell that has to be built up around the trace of

the considered lateral surface.

The values of fi are computed as the averaged value of f itself in that point. With

reference to figure 7, we have for instance:

1 (fleAgl_y + S_3Ag23 _ + I3,Ae34_ + fa, Ag4,_)
(L)N,M+I/2- S1234

1 (f12Ae12, + f23Ag23, + f34Ag34, ÷ f41Ag41,)
(fz)N'M+l/2- 51234

where

1 (fN-l,U + fN-l,i+l + fN,M+I + fN,U)=
f23 ---- fN,M+I

1 (fN,M ÷ fN,M+I ÷ fN+I,M+I -[- fNT1,M)= -i
f41 - fY,M

On the other hand, the values of u, v and w in correspondence with the trace of the

lateral surface are simply computed as the averages of the values in the adjacent cells:

fN,M+I/2

fg,M + fg,M+l
=

2

3.4 Boundary conditions

Boundary conditions have been implemented imposing no slip and adiabatic or isothermal

conditions at the wall and, for what concerns the pressure gradient, reducing Navier-Stokes

equations to the boundary layer limit:

qw_O

{ (VT) = 0T_ imposed

=0

for adiabatic wall

for isothermal wall

3.5 Initial conditions

The use of a space marching technique requires the specification of the flow conditions

across the inlet surface. The geometrical configurations considered here posses a leading

edge sufficiently thin to produce a shock wave attached to the body, permitting us to start

the integration directly from the leading edge, where freestream conditions are imposed. It

is necessary, however, to start with short integration steps, to allow the viscous layer to

establish as quickly as possible.

12
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Figure 8: The ENO scheme

3.6 Second order accuracy

Second order accuracy is achieved following the guidelines of the Essentially Non Oscillatory

schemes for shock capturing techniques, originally proposed for time-dependent problems [4_.

In the present case, the initial data distribution of the primitive variables U = {p, u, v, w, h} 1

along the r/direction is considered to be piecewise linear. With reference to figure 8, it is for
instance:

U = UA + SA (7 -- 77A) in A

U = Us + ss (7- _e) in B

The slopes s are chosen in the ENO fashion to avoid spurious oscillations at flow disconti-

nuities, that is, for each element SA of vector SA:

{ >0SA = minmod (S+A,SA) = 0 if s+.sA < 0

with

s_ ~ UB-- UA
- uA-d(B'_c

SA " d(A, C)

The discontinuity originating the Riemann problem is thus defined by the values:

( )' -
UN,M+I/2 k ~ UA 3t" SA rIB r]A _ UA -4- SA

• 2 d(A,B)
(UN,_+I/_)R~ CB- sA_ - _* ~ V_ - s_--- 2 - 2

Second order accuracy in the hyperbolic space marching direction x is obtained by using

the (complete) quasilinear form of the governing equations, which makes it possible to obtain

the derivatives Px, u,, v,, wx and h,. The necessary derivatives in the y and z direction are

evaluated using the Gauss' theorem as in the computation of the viscous fluxes. Therefore,

the final values for defining the Riemann problem are provided by:

d(A,B) + (V_) A Az

(UN,M+ll2)R= UB--SB-_2_ + (Vx)B y

13



3.7 Evaluation of the integration step size

The amplitude of the integration step is chosen according to the inviscid CFL condition

modified with a viscous correction. The adopted procedure is the following:

Ax = min (Ax_,Axz)

with

mz

2#
1+

Re p u min (Ay, Az)

4 Results and Conclusions

To verify the capacity of the above discussed methodology to solve complex flowfields, a

numerical study of symmetric supersonic corner flows in laminar regime is presented. The

obtained results are also compared with experimental data taken from the literature, in

particular from reference [8].

To match with experiments, the following geometrical and fluid-dynamic conditions have

been considered:

_1 62 0 Moo Reoo/m

8 ° 8 ° 90 ° 12.3 5xlO 6

Pr Too[K] T_tK]

0.72 45.3 300

where the meaning of _ and 0 is shown in figure 9.

The fluid-dynamic pattern typical of this kind of flows consists of a system of five shock

waves. Two of them, which separate regions ! a_n_d_II in figure 10, are generate d bythe pres-

ence of the wedges; the remaining three are due to the presence of a Mach disk (irregular

reflection) in the region where the previous two converge. Contact surfaces directed towards

the symmetry plane are generated at points where shocks interact (triple points) because

of the different levels of entropy produced by the wave system on either side of the inter-

action. Shock waves separating regions II and IV impinge on the boundary layer and are

reflected as expansion waves, which in turn encounter the slip surfaces and are transformed

in compression waves. The interaction between the impinging shock and the boundary layer

provokes the separation of the latter in the crosswise direct!on. Therefore, a streamwlse

vortex develops, resulting as an obstacle to the crossflow, and thus generating a compression

analogous to the one typical of two dimensional supersonic flows over a ramp.
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In the following, numerical resultsobtained using a stretchedcomputational grid com-
posedof 100xl00 cells will be shown.The stretching function usedis:

with

(34)

In particular, a stretching parameterZ_ = _ = 1.03 has been used.

The external boundaries have been defined starting with y,_, = 0.055 and zm_, = 0.055

at the inlet surface; proceeding with the integration, the upper and lateral boundary surfaces

have been kept parallel to the opposite walls.

The presence of the vortical structures and of the related compression fan transports the

three-dimensional effects due to the corner at noticeable distances from it inside the shock

layer, making it necessary to fix rather ample external boundaries. If a square or rectangular

grid is used, this results in a lot of points outside the shock layer. To avoid wasting time

in computing points for which it is known a priori that the freestream conditions apply, a

procedure has been implemented that detects the position of the shock layer at each step of

integration and solves the flowfield only in the part of the domain containing it.

In figure lla, crossflow streamlines corresponding to x=0.09 m are plotted. The presence

of a large streamwise vortex split in two parts that are tied by a saddle point can be clearly

seen. Below it, close to the wall, a small secondary vortex is captured thanks to the great

refinement of the mesh. This picture is enlarged in figure llc. In figure llb, pressure

contours are presented using the same scale. The patterns described by the sketch of figure
10 are found.

In figure 12, limiting streamlines at the wall are plotted; crossflow streamlines have been

placed beside for a better comprehension of the picture. The separation and reattachment of

the primary double vortex are well evidenced, and also the presence of the secondary vortex

at the wall can be perceived.

The same computed results presented above are now compared with experimental data

extracted from reference [8]. In figure 13, pitot pressure contours corresponding to a distance

from the leading edge of 0.09 m are shown. The contours show a qualitative good agreement.

In fact, the wedge-shock position is not exactly the same, as the computed one corresponds

to a local slope of about 4.90 with respect to the wedge, versus an angle of about 5.5 ° for the

experiments (the inviscid value should be 3.3°). Nevertheless, the maximum pitot pressure

value is 6.70 for the computation, and experiments show their highest value on the contour

corresponding to 6.42.

In addition, in figure 14a, numerical and experimental static pressure at the wall are

overlayed, showing a satisfactory agreement. In figure 14b, the flow direction at the wall is

compared. The two curves are very similar close to the corner, as demonstrated by the fact

that the reattachment of the primary vortex is detected in the same position. Nevertheless,

away from the intersection of the ramps, some not negligible differences start to appear. In
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the computation, the secondary vortex is smaller and closer to the corner (though not to such

a great extent) and the separation of the primary vortex is located in a different position

with respect to the experiments. Such discrepancies might possibly be due to the fact that,

approaching the lateral boundaries of the model, experiments are affected by side-effects

or by interference with the tunnel boundary layer. Finally, in figure 14c, the heat flux at

the wall is compared. As it could be expected after the previous discussion, the results are

similar as far as the reattachment of the primary vortex is concerned, with the peak of heat

transfer in the same position and showing a similar magnitude. Conversely, the location of

the peak related to the secondary vortex is different, though the value is the same. Other

discrepancies concern the fact that, in the numerical results, we find no trace of the peak

which, in the experimental curve, is signaled at y __ 0.09; in effect, it seems difficult to

justify its presence, since no visible reattachment is detected in that position, neither in the

experiment. Last, it can be noticed that the computation predicts an almost null heat flux

locally at the corner, in contrast with the experiments; in this case we think it is reasonable

to trust the numerical result, since very close to the corner the temperature varies very

smoothly, and on the other hand the measurement technique used cannot approach close to
the corner.

In order to adequately address the accuracy of the computation, the results obtained with

the 100xl00 grid are compared with those resulting from a 60x60 grid. The main features of

the flowfield are unchanged, as can be seen from figure 15, where pitot pressure contours are

shown. The major difference is related to the secondary vortex: with the finer mesh it is fully

captured, while with the coarser one its presence is just sensed. A proof to this statement

can be found in figures 16 and 17. In figure 16, crossflow streamlines are presented: in the

left picture (60x60 mesh), the undulation of the crossflow streamlines suggests the presence

of the secondary vortex, but in the right one (100xl00 mesh), the vortex is evident. In figure

17, the flow direction at the wall is shown again: it can be seen that in the case of the finer

mesh (100xl00), a crossflow reversal is present at about y -- 0.12, while with the coarser

mesh (60x60) this feature does not exist.

In conclusion, the agreement arising from the comparison appears to be satisfactory,

though some minor discrepancies appear.

Therefore, the numerical method proposed seems to be promising, as it permits one to

investigate complex three-dimensional flowfields in great detail of a reasonable computational

cost.
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Figure 15: Pitot pressure contours computed with different meshes: (a)60x60 mesh,

(b)100xl00 mesh.
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